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Gauge theories for nonsemisimple groups are examined. A theory for the 
Poincare group with all the essential characteristics of a Yang-Mills theory 
necessarily possesses extra equations. InoniJ-Wigner contractions of gauge theo- 
ries are introduced which provide a Lagrangian formalism, equivalent to a 
Lagrangian de Sitter theory supplemented by weak constraints. 

1. I N T R O D U C T I O N  

The recent advances of  gauge theories for electroweak interactions and 
the promising approach  of  ch romodynamics  to strong processes have put 
forward expectat ions that also gravitat ion would, in not  too remote  a future, 
leave its splendid isolation and find a formulat ion in the language of  gauge 
fields. The analogies between Yang-Mi l l s  theory at the classical level and 
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general relativity, reflecting their common geometrical basic setting, have 
long been noticed, but the essential fact remains that the Hilbert-Einstein 
Lagrangian is not of the Yang-Mills type and the dynamical aspects of the 
two theories are qualitatively different. 

Despite its charm and success, general relativity is not beyond criticism 
from a theoretical point of view. We shall not go into this matter here. 
Reviews on the subject have been made, among others, by Hehl (1976, 1979) 
and Zhenlong (1979) and, from a different standpoint, by Logunov and 
collaborators (Logunov and Folomeshkin, 1978; Denisov and Logunov, 
1970, and references therein). A very general point frequently made is that 
general relativity does not do justice to the entire Poincar~ local symmetry 
of space-time. This is a common thread linking (sometimes loosely) the old 
Cartan (1922) theory, through the classical papers by Kibble (1961) and 
Sciama (1962), to the more recent developments (Trautman 1970, 1979; 
Hehl, 1979, 1981; Camenzind, 1975, 1978; Wallner, 1980; Cho, 1975, 1976a; 
Ne'eman, 1980; Drechsler, 1981). We shall in the following simply accept 
the general lines of this criticism as justifying further research and take as 
granted the interest of building a gauge theory for the Poincar~ group, 
sticking however to a very orthodox gauge-field point of view. Although 
allowing for the specificity of gravitation, we try to preserve as far as 
possible the essential characteristics of Yang-Mills theories, not the least 
being duality symmetry and the consequent conformal invariance. It is not a 
question of "gauging" an abstract Poincar6 group; the group is to be taken 
as acting on the frames defined on space-time, wherefrom the above-men- 
tioned specificity arises. This peculiarity is usually referred to by saying that 
gauge theories involve groups acting on internal spaces, while gravitation is 
concerned with space-time itself. Such a phrasing is to be taken cum grano 
salis: The Poincar~ group will act on the tangent spaces of space-time or, 
maybe better, on the spaces of frames defined on these tangent spaces. The 
isomorphism between Minkowski space and the tangent space to each one 
of its points is not canonical and the presence of a gravitational field is 
precisely what makes its frame dependence ineluctable (Kaempffer, 1968). 
That gravitation is more intimately connected to space-time comes from 
soldering, a property of the bundle of frames which is absent in the bundles 
lying behind the usual gauge theories (Trautman, 1979). It is related to the 
affine character of the tangent spaces and to torsion, and shows itself in any 
differentiable manifold. Its main consequence is the existence of an extra 
Bianchi identity and, if duality symmetry is to remain valid, and extra 
Yang-Mills equation. 

Behind the phenomenological successes of gauge theories stands their 
basic formal property, renormalizability. Although not all of them are 
automatically renormalizable, their general structure seems to favor strongly 
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a good short-distance behavior, precisely a point where general relativity 
fails. In most of the approaches cited above the Lagrangian density is 
proposed in a somewhat ad hoc way. Our "gauge orthodoxy" will lead us 
to a unique Lagrangian as acceptable for a Poincar6 gauge theory. Further- 
more, the Lagrangian density will not determine the theory, as it will be 
necessarily implemented by constraints ensuring the commutativity of trans- 
lations in space-time. The final result is not a Lagrangian function, but a 
Lagrangian formalism and it would be very difficult to find it by simply 
inspecting candidate Lagrangian densities. The Lagrangian density is of the 
usual gauge type, i.e., quadratic in the field strengths, and as such its 
chances of renormalizability are hopefully great. One knows at least that the 
addition of quadratic terms to the Einstein-Hilbert Lagrangian do tend to 
improve its renormalizability (Stelle, 1977; Sezgin and Nieuwenhuysen, 
1980). 

In Section 2 we describe the main features of what we take as a 
complete (classical, sourceless) gauge theory, stressing the role of duality 
symmetry. The point is made that the absence of a nondegenerate 
Killing-Cartan metric on the group is not by itself an impediment: theories 
for the nonsemisimple linear groups GL(n, R) are quite feasible through the 
use of the general invariants of the adjoint representation. It is, however, a 
hindrance for groups including a translation subgroup, like the affine linear 
group A L( n, R) = GL(n, R)OT,, and groups of the Poincar6 type P,, = SO(n 
- 1 , 1 )  •T,,_ 1.~, which act on affine frames. This case is analyzed in Section 
3, where the Yang-Mills equations are obtained by using the duality 
symmetry. Concerning the Lagrangian, however, the difficulty remains: if 
the invariants introduced in Section 2 are used, the translational sector does 
not contribute to the dynamics. In order to face this problem, we proceed 
along the following line of thought: 

(i) The Bianchi identities are purely mathematical statements, indepen- 
dent of any dynamical assumption; nevertheless, they can be seen as 
consequences, via a variational approach, of the second-order invariant of 
the adjoint representation, for linear, unitary, and pseudo-orthogonal groups; 
this is a mere formal trick, devised to help, by analogy, the search of the true 
Lagrangian density; the second-order invariant is in reality a surface 
contribution and, rigorously, no local equations would follow from it. 

(ii) For the same groups, Yang-Mills equations follow from a similar 
treatment, the corresponding Lagrangian being obtained from the second- 
order invariant if account is taken of duality symmetry. 

(iii) In the case of affine frames there exists an extra Bianchi identity, 
which does not follow from the second-order invariant; this invariant misses 
it in just the same way the corresponding Lagrangian misses the transla- 
tional contribution. 
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(iv) Because we know the missing Bianchi identity to be true anyhow, 
we look for an enlarged formalism in which it does come from a second-order 
invariant and use the corresponding Lagrangian to obtain the Yang-Mills 
equations; these result to be just those obtained by direct use of the duality 
symmetry. 

The formalism is presented in Section 4. It requires viewing the 
Poincar6 group as the Wigner-In6nii (1954) contraction of the de Sitter 
group. Inhomogeneous groups are precisely the usual outputs of such 
contractions (Inonia, 1964; Gilmore, 1974). In a way, going to the de Sitter 
group puts translations and (pseudo-) rotations on an equal footing and it is 
finally the de Sitter second-order invariant which gives the Lagrangian 
wished for. The formalism corresponds to a de Sitter gauge theory supple- 
mented by weak (in the sense of Dirac) constraints ensuring the commuta- 
tion between translations. 

Concerning the sources, only the generalized conservation laws will be 
given. In particular, the problems related to the integrals of motion are far 
from trivial and will be discussed elsewhere. Of course, the presence of 
spinor fields in the associated bundles would force the use, instead of the 
Lorentz and Poincar6 groups, of their corresponding covering groups, 
SL(2, C) and ISL(2, C). In reality, the whole theory should be built up with 
these groups from the beginning. However, in practice, only the Lie algebras 
will be used here and, for simplicity we shall restrict ourselves to P,,. The 
extension to the covering groups is straightforward and allows some contact 
to be made with other models in which they appear from the start 
(Ne'eman, 1981). As it stands, the model examined below has Yang-Mills 
equations which reduce to the Yang's equations (Yang, 1974) in the Lorentz 
sector plus the Einstein's equations in the translational sector for the 
particular case of a torsionless metric connection, only the latter remaining 
for sourceless fields. The role played by the translational sector makes this 
theory very different from Yang's model and from Carmeli's theory (Carmeli, 
1970; Carmeli and Kaye, 1978) based on the SL(2, C) group. Carmeli's 
theory yields the same equations as Einstein's at a classical level, but 
includes a different choice of the fundamental dynamical variables which 
makes it renormalizable in the sourceless case (Martellini and Sodano, 
1980). This is, of course, an enormous advantage, but from the point of view 
we adopt here, it has an "unorthodox" Lagrangian density and does not 
take into account the whole Poincar6 group. 

2. GENERAL STRUCTURE OF GAUGE THEORIES 

Our objective is to obtain a theory for the Poincar~ group with all the 
essential characteristics of a gauge theory. In this section we shall describe 
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the general structure (Popov, 1976; Cho, 1975) we would like to preserve. 
Because it makes life so much simpler, the compact notation of differential 
forms will be used. 

A gauge potential is a 1-form A with values in the Lie algebra G '  of the 
gauge group G: given for G'  a basis { J,  } of generators, 

A =  JaA ~ (1) 

where the A ~ are usual real-valued 1-forms, which in a given coordinate 
system { x ~ } are 

A" = A~ ax ~' (2) 

The components A~ are the usual gauge potentials. Our potential A is 
consequently a matrix of 1-forms. Mathematically, it is a connection on a 
fiber bundle with space-time as the base manifold and the gauge group as 
structure group. To simplify matters, we shall consider the forms as already 
projected to the base manifold, which presupposes a local choice of gauge 
(or section). The equations are formally the same in any gauge. 

A connection (Bishop and Crittenden, 1965) defines covariant deriva- 
tives of tensors belonging to any representation of G. The potential A is G'  
valued and belongs to the adjoint representation. For a form X =  J , X "  in 
this representation, the covariant derivative is 

D X =  aX +[ A,  X]  (3) 

Here, d is the exterior derivative and the bracket (rather peculiar because 
forms of odd degrees anticommute) is defined by 

I X ,  Y] = [ L ,  Jb] X~ A yb = LL tcX , ,  A yh (4) 

where f,,h" are the structure constants of G. In words, the bracket is a 
commutator  if at least one of the matrices has as elements forms of even 
order, and an anticommutator otherwise. 

�9 The gauge field strength is the curvature of the connection A, that is, its 
own covariant derivative. Because in this particular case [[ A, A] = A A A, it 
takes the simple form 

F = d A +  A A  A (5) 

It is a 2-form in the adjoint representation which, in the particular system of 
coordinates { x"  }. has the components F" . .  given by 

F _ l  a ~J,,F ~,~dx ~' A dx ~ 

l a a b c 
= �89  O~,A~- O,A~, + ft,r dx ~' A dx ~ (6) 
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An important operation on forms is the dual transformation: given a 
metric g~ on an n-dimensional manifold the dual * P of a p form 

1 p dx ~ A dx ~'2 A �9 �9 �9 dx~p 
P = ~ .  - ~s~2.. . tLp "-  

is the (n - p) form 

•/g 
O'PqXlO "p'2h2 P ' t t P ~ P P ,  �9 �9 e d x  p + I  A �9 " " A d x  n 

�9 P = p ! ( n  - p ) !  o o - - - o  ^,^2..-^p ~,~2.. .~,,  

(7) 

where g = det(g . . )  and e.,~2...." is the Levi-Civith antisymmetric symbol. In 
particular, for a 2-form on a four-dimensional space, 

(8) 

The Bianchi identity comes by differentiation of (5): 

d F + [ A , F ] = O  (9) 

The covariant derivative of F is so automatically zero. All gauge theories 
exhibit duality symmetry, which says that (for the sourceless case) the 
dynamical (Yang-Mills) field equations are just (9) written for the dual of 
F: 

d * F + [ A , * F ] = O  

In the presence of sources, the covariant derivative of * F is equal to the 
Noether current densities whose corresponding charges generate the gauge 
group. This procedure amounts to a practical rule to obtain the field 
equations from the Bianchi identity. Notice that, unlike (9), the Yang-Mills  
equation depends on the space-time metric, necessary to define the dual. 
However, as a simple inspection of (8) shows, the operator *, when applied 
on a 2-form in a four-dimensional space, depends only on the conformal 
class of the metric: it gives the same result for any metric h,~ = f E g ~  

conformally equivalent to g~.  This is the origin of the conformal invariance 
of classical sourceless gauge theories (Atiyah, 1979). A complete Yang-Mills  
theory will be, for us, one whose fundamental equations are (9) and (10) in 
the absence of sources. When a source current is present in (10) one might 
be tempted to add convenient sources also to (9) in order to preserve 
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duality. This would mean that (5) fails to be true everywhere. We prefer to 
adopt the point of view that duality is a symmetry of the sourceless theory, 
broken by the source currents. 

Now, equations (9) and (10) have very different origins. The former is 
an identity of purely geometrical content, coming from the very definition 
(5) of curvature. The latter is a physical equation, resulting from the choice 
of the invariant action 

S=- �88  fTr(F ^ * F) (11) 

However, also the Bianchi identity can be obtained as the Euler-Lagrange 
equation in a variational approach. In order to see it, a digression on the 
invariants of the adjoint representation will be necessary here (Kobayashi 
and Nomizu, 1969). Given a matrix X =  J,,X ~, the invariants are certain 
polynomials in the traces of powers of X. More precisely, the k-order 
invariant I k is the coefficient of z k in the expansion of det[I  + zX]. Take for 
instance the Lie algebra GL'(n, R) of the linear group GL(n, R) of real 
matrices n • n. If X E GL'(n, R), 

z z2[(TrX)2_TrX2] d e t [ l + z X ] =  ~ zklk----l+~.TrX+~. 
k = O  

z 3 
+~. [(TrX)a-3(TrX)(TrX2)+2TrX3]+ ... (12) 

So, the first-order invariant is TrX. It is a simple matter to see that the 
n-order invariant is det X. For unitary and (pseudo-) orthogonal Lie alge- 
bras analogous procedures apply, although in these cases Tr  X = 0 for n >/2. 
The second-order invariant 

I2=�89 2] (13) 

reduces then to 

12 = - �89 X 2 = - �89 XaXh (14) 

Usually, gauge theories deal with semisimple groups, for which Y~b = 
Tr(J~Jh) is the well-defined metric of Killing-Caftan. Some criticism to 
Poincar6 gauge theories (and nonsemisimple groups in general) has been 
based on the nonexistence of a bi-invariant metric on the group (Basombrio, 
1980), which would make it impossible to write down a Lagrangian. We 
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shall see that, by using the invariants above, such a difficulty can be 
circumvented for the linear group but that for the Poincar6 case an 
enlargement of the group is required, at least as an intermediate step. 

As 2-forms commute with each other, F as given by (6) behaves just as 
a numerical matrix belonging to the vector space of the Lie algebra. For 
X = F, (12) gives a series of invariant forms involving the curvature. A first 
fundamental mathematical result is the Weil lemma: roughly speaking, it 
says that each such invariant form has vanishing divergence. So for instance 
the case of electrodynamics with G = U(1): there T r F  is F itself and the 
lemma says that dF= 0, which incorporates the first pair of Maxwell's 
equations. The second-order invariant will be a 4-form, forcibly divergence- 
less on a four-dimensional space, so that the lemma gives nothing new in 
this case. A second important mathematical result is that these invariant 
forms define cohomology classes (Chern, Pontrjagin, or Euler classes, de- 
pending on the bundle considered) and their integrals, besides being in- 
variant under transformations of the gauge group, are numbers invariant 
under continuous deformations (and so, variations) of the connection. Such 
is the case for unitary and orthogonal groups, for which these invariant 
numbers are 

f&(F, F )  = - � 8 9  F )  (15) 

We come now to the point we wish to make: if we apply the usual 
variational procedure to (15), taking the potential components A~ as inde- 
pendent fields, we obtain just the Bianchi identity. In the case of the linear 
group, for which the whole expression (13) is to be used, we obtain (9) and, 
due to the ( T r F ) A ( T r F )  term, the additional equation 

d ( T r F )  = 0 (16) 

This would come anyway from the Weil lemma for the first-order invariant. 
The action (11) is a particular case of the invariant 

I2(F,* F )  = � 8 9  A T r *  F - T r ( F  A * F ) ]  (17) 

although in this case no theorem exists ensuring the invariance of the 
integral under continuous deformations of the connection: this invariance is 
now a physical assumption. Again, this is where the difference between the 
Bianchi and Yang-Mills formulas ties: the first is an identity because it 
comes from the "var ia t ion"  of an invariant number, while the latter is a 
consequence of a physical assumption. 
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A full gauge theory can be obtained for the (nonsemisimple) group 
GL(n, R). If we take the variation of fI2(F, * F),  we find (10) plus an extra 
equation 

d ( * T r F )  = 0 (18) 

As T r F =  d(TrA)  in this case, the field traces give a one-dimensional 
subtheory, a consequence of the nonvanishing first invariant: the last 
equation is just the dual counterpart of (16). The linear group GL(n, R) can 
be seen as acting on functions defined on the n-dimensional Euclidean space 
R". On this space a global system of coordinates ( x  i } can be used and the 
generators of GL(n, R) can be realized by the differential operators A)= 
-xiOj. The trace is then the well-known dilatation operator -x~Oi. [The 
sign is really irrelevant here. It has been chosen so as to agree with 
the matricial representation we shall be using later on (see equation (20).] 
The subtheory is therefore related to dilatation invariance. 

So, a complete gauge theory c a n b e  obtained for this particular kind of 
nonsemisimple group. It is not quite alike the usual theories, as it has 
additional equations coming from the first-order invariant. Nevertheless, 
extra difficulties arise in the case of inhomogeneous groups, semidirect 
products including translation subgroups, of which the most distinguished 
examples are the affine linear group AL(n, R) and the Poincar~ group P~. 
The trouble comes from the fact, to be examined later on, that the 
translational part does not contribute to the invariants given above. The 
invariants for the P4 group, for instance, are just those of the homogeneous 
Lorentz group S0(3,1). An extra Bianchi identity exists in these cases which 
is not obtainable from the invariants, and one is led to suspect that a gauge 
theory obtained along the lines sketched above will be incomplete for such 
groups. Our objective will be to find a way of arriving at all the Bianchi 
identities also in this case and then, by the duality requirement, establish a 
complete Yang-Mills  theory. 

3. GR OUPS OF FRAME TRANSFOR MA TIO N S  

The groups AL(n, R) and Pn act on the affine frames (Kobayashi and 
Nomizu, 1963) defined on space-time or, more conveniently, on the affine 
basis of its tangent spaces. The affine character, or the translational invari- 
ance, accounts for the arbitraryness in the choice of the origins in tangent 
spaces. Such groups are primary, always present and at work in any 
differentiable manifold. They are consequently more closely related to 
space-time than the "internal"  groups of the usual gauge theories. This 
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deeper intimacy is characterized by that very peculiar trait of the bundle of 
frames which is soldering. In order to examine this property and expose its 
relation to translations, some use of the bundle language (Lichnerowicz, 
1962; Bishop and Crittenden, 1965) seems unavoidable. Let us proceed to a 
(very crude) description of the bundle of linear frames, in the meantime 
seeking which fundamental equations a P4 theory should have in order to 
comply with the general pattern of the previous section. 

Given a differentiable manifold M of dimension m the tangent space 
Tp M at a fixed p ~ M is a vector space of the same dimension. Vector (or 
linear) frames on TpM (sets of m linearly independent vectors) can in 
principle be chosen at will. We can choose one of them for initial reference 
and specify every other frame by the m x m matrix whose elements are the 
components of its members. This corresponds of course to a frame transfor- 
mation. The set of all such transformations on TpM constitutes the linear 
group GL(m, R), which can in this way be identified with the set FpM of 
linear frames on TpM. We want that frames (and components of vector 
fields with respect to them) be differentiable. Mathematically, this pre- 
supposes that the union of the Fp M for all p ~ M has itself been made into a 
differentiable manifold. This larger, (m + m2)-dimensional manifold is the 
bundle of linear frames BLF(M). A point on this manifold can be specified 
by ((x~},(h~'}),  where (x  ~} are the coordinates of p ~ M in some local 
patch and (h7 } is the matrix corresponding to the frame. Notice, however, 
that BLF(M) is not a direct product of manifolds: in the process of making 
BLF(M) into a smooth manifold the ("base")  manifold M is blended into 
BLF(M) in such a way that its identity is somehow lost. It can only locally 
(that is, on a local coordinate patch) be unblended out again. This is done 
by a local section, a mapping of a coordinate patch into BLF(M), which 
corresponds to a local choice of linear frame. 

The spaces tangent to M can, however, be associated to subspaces 
(called "horizontal")  of the spaces tangent to BLF(M), although in in- 
finitely many ways. Extricating spaces tangent to M from all this entangle- 
ment is precisely the task of a linear connection: each connection defines a 
horizontal space for every p ~ M, and associates it to TpM. A linear 
connection is a 1-form F on BLF(M) with values on the Lie algebra 
GL'(m, R) of the group GL(m, R). The horizontal spaces are characterized 
by the vanishing of F when applied to their vectors. Once a local choice of 
frames is made on a particular coordinate patch, F can be made into a 
GL'(m, R)-valued 1-form on the patch, that is, locally on M. It is conveni- 
ent to use for GL'(m, R) the canonical basis { AJ i }, where the matrix AJ~ has 
elements given by 

(AJ,) P = (~,~(~ p ( i , j , p , q= l  ..... m) (19) 
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These matrices obey the Lie algebra commutation rules 

[ aJ,, a'k ] = ( a vr (20) 

The advantage of this basis is twofold: the matrix elements coincide with 
the components and the equations to be written later on will have the usual 
expressions in the particular case of Riemannian geometry. On a patch with 
coordinates ( x  ~ }, the connection can then be written as 

r = a ; ,F~ ,  ax"  (21) 

which is a matrix of 1-forms [compare with (1) and (2)], a "gauge potential" 
for the linear group. It is a 1-form in the adjoint representation of GL(m, R). 
Just as for the gauge potentials, it defines a covariant derivative and its 
curvature 

F = d r  + r A r (22) 

is a GL'(m, R)-valued 2-form, whose components in a coordinate system 
are those in (6) with the structure constants given in (20). This is perhaps 
the place to insist on some trivial points: curvature (as torsion, to be defined 
later) is not a property of space, but a characteristic of a connection. 
Connections are in principle highly arbitrary, each corresponding to one of 
the (infinitely many) ways of retrieving the spaces tangent to M from those 
tangent to BFL(M). Only if submitted (as they will be here) to extra 
equations and boundary conditions will they become fixed. 

Up to this point, the analogy with gauge theories is complete. Gauge 
transformations correspond here to linear transformations of the frames on 
the tangent space at the point p ~ M. The peculiar character of the present 
case can be seen pictorially as follows: intuitively, we think of the tangent 
space as " touching" the manifold M at the point p, which is "shared" by M 
and TpM. Else, we tend to look at p as the origin of TpM. However, any 
point of Tp M can be chosen as the one " touching" M at p. This means that 
the choice of origin in TpM is arbitrary or, if we prefer, that TpM is to be 
taken as an affine space, or, still, that on TpM an extra translational 
invariance is at work. Accounting for it, a 1-form on BLF(M) exists, with 
values in the Euclidean space R m. This form, named "canonical" or "solder" 
form, is independent of any connection and is "horizontal"  in the following 
sense: given any connection, it will vanish when applied to any vector which 
is not horizontal. Given a connection and this always present solder form, 
an isomorphism is established between (i) horizontal spaces and spaces 
tangent to M; (ii) vertical spaces [the linear complements to the horizontal 
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spaces in the spaces tangent to BLF(M)] and GL'(m, R). This makes the 
group GL(m, R) much more tightly tied to M than would the gauge group 
of an internal symmetry. 

Let us examine in some detail the above-mentioned isomorphism of 
vector spaces. To begin with, it is not canonical: it depends on the choice of 
local frames. If we choose for R "  the vector basis { Ij }, where lj is the vector 
column with 1 in t h e j t h  row and 0 everywhere else, each local frame (h i } 
defines an isomorphism h: R" ---, TpM by h(li) = hi. In a local coordinate 
system (x~}, h~=h~al,. This makes it possible to transform indices 
(i, j ,  k . . . .  ) in R "  into indices (/~, v, O . . . .  ) in TpM by contracting with h~ [or 
h i, the elements of the matrix inverse to (h~)]. For instance, the matrices AJ i 
may be seen as operating on the column vectors of R ' ,  Ai~I k = ~[I~, and can 
be translated into matrices operating on vectors of TpM, A~ = h~h~Ai~. 
These matrices provide a realization of GL'(m, R) on the tangent space. In 
the same way, a metric 7/ on R m, r/(I  i, Ij)= ~jj, is taken into a metric 

i j g~, = huh~*l,j on the tangent space. The isomorphism between horizontal 
and tangent spaces is the composition of the solder form with the mapping 
h. Given the local frame (h,.), the solder form can be made into an 
Rr~-valued form on M, with an extra property: it will have the expression 

S=I jh~dx  ~' (23) 

so that S( hj) = Ij. 
The extra translational invariance on TpM forces us to enlarge the 

group GL(m, R) to the affine group. The most convenient way to do it is to 
recall the additive group structure of R ' .  This corresponds to identifying it 
to the translation group T,,, of which the ( I j )  above are taken as genera- 
tors. The complete Lie algebra AL'(m, R) generators will obey, in addition 
to (20), the rules 

[A J,, Ik] = - 8JkI~ (24) 

[4,/j] =0 (25) 

In order to represent this algebra it is necessary to resort to (m + 1)• 
(m + 1) real matrices of the form 

~ =  AJi ' (26) 
. . . .  - ' 1  . . . . . .  

o . . . o  I o 

Once this is done, the bracket (4) can be used. The torsion of F is the 
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covariant derivative of S: 

T = d S  +~F,S]  = d S +  F A S + S A F (27) 

By differentiation of (22) and (27), the two Bianchi identities of 
differential geometry result: 

d F + [ F , F ] = O  (28) 

dT+[I',T]+[S,F]=O (29) 

Owing to the absence of soldering in the bundles with general groups, only 
(28) [which is (9)] appears in the usual gauge theories. 

The Poincar~ group P4 is a subgroup of AL(4, R) and the above 
considerations can be applied to it by reducing GL(4, R) to the Lorentz 
group. The /'4 theory is a subtheory. This is not a trivial statement: not 
every subgroup yields a subbundle with the connection a particular subcon- 
nection of the above F. This is true only under some strict conditions which 
the Lorentz group happens to satisfy (Kobayashi and Nomizu, 1963). The 
translation group T3,~ does not, so that a purely translational gauge theory 
(Cho, 1976b) is not a reduction of the AL(4, R) case and does not give a 
subtheory. Suppose the Lorentz metric ~/ is given on R 4. The subgroup of 
GL(4, R) preserving 7/ is generated by j k ) =  (~kSJ_ 7/jiT/k,)Ai, satisfying 
,lJtJijJk t = ~/i*. The isomorphism h defined by the frame ( h~ } will take these 

t.,~t, j rk  satisfying g,,Oj~.,jx = g~X and providing a generators into J"~ = ,,k,, ,~ j, 
realization of the Lorentz algebra on TpM. The Lorentz connection will be 
the reduced I" 0 = J~",.F~k, a particular linear connection of the form F = 
A't(Sktr/- ~/,kaq0)F k. The curvature F 0 = JJiFo~ is obtained accordingly. In 
component form, the usual expressions for the curvature and the torsion are 
easily obtained from (22) and (23). Equation (28) gives the usual Bianchi 
identities for F0~ = ( ! / 2 ) R ~ ,  dx ~' A dx" and, after conversion of indices by 

= hehJR', the extra Bianchi identity (29) is, for vanishing putting RPo~ --,.-o--j#,, 
torsion, the origin of the well-known cyclic symmetry Rotor,,, 1 = 0. If F 0 has 
vanishing torsion and the metric g, ,  has zero covariant derivative according 
to F 0 (so that F 0 is the Levi-Civith connection related to g,,),  the usual 
expressions for Riemannian geometry result. Notice, however, that there is 
no compelling reason for doing that here: from the point of view of gauge 
theories, the dynamical variables are the connections. 

The solder form appears much as a gauge potential for the translation 
sector in (23). Furthermore, the isomorphism h, related to a local frame 
{ h i }, although providing the realization { A t  } of the linear algebra on the 
tangent spaces, fails in general to do the same for the translations: the 
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choice of an anholonomic frame "breaks"  the translational invariance. In 
Yang-Mills  language, this choice of frame corresponds to a choice of gauge. 
The translational field strength would be dS, but the noncommutativity (24) 
of linear transformations and translations creates a coupling between the 
two sectors which is automatically accounted for in the torsion. As a vector 
space, the Lie algebra AL'(m, R) is a direct sum of GL'(m, R) and R' .  We 
can define a gauge potential for the affine group by 

(30) 

for which the field strength will be 

F= dF + F A F= F+ T= AJiF ~ + I,T* 

The Bianchi identity for if, 

(31) 

d F +  [F, i f]  -- 0 (32) 

decomposes just into a linear part which is (28) and a translational part 
which is (29). All this remains true for the Poincar6 case, which we shall 
consider from now on, omitting the indices in F o, F o. 

Let us now apply the considerations of Section 2 to determine the 
Yang-Mills equations for a Poincar~ gauge theory. They will come from the 
Bianchi identities by duality symmetry: 

(33) d * F +[F, * F]=O 

(34) d * T + [ F , * T ] + [ S , * F ] = O  

These expressions show once again that the Lorentz sector does constitute a 
subtheory, but not the translational sector. These equations have been 
proposed by Popov and Daikhin (1976) on the basis of a heuristic argument. 
They have pointed out that, for a Levi-Civith connection F, they reduce to 

R~,~: x + R~x; ~ = 0 

and 

R/~ u --~ 0 

respectively. So, this theory includes Yang (1974) and Einstein theories. Of 
course, in this sourceless case, they are redundant. Not  so in the presence of 
sources. The sources of the Yang-Mills equations are the Noether current 



Complete Gauge Theory for the W h o l e  Poincar/~ Group 315 

densities whose charges are the generators of the gauge group. Therefore, 
here they will be the density of relativistic angular momentum M =  
JJiM~x dx x and the energy-stress tensor O = IgOgodx~ 

d*F=[F,  *F]= *M 

d*T+[F,*T]+[S, ,F]= ,O 

(35) 

(36) 

In gauge theories, the conservation of the source currents follows directly 
from the field equations. In electrodynamics, the Maxwell equation d * F = 
�9 j implies d * j = d 2 * F = 0. In more general gauge theories the covariant 
derivative is to be used. From the above equations it can be directly verified 
that 

(37) d* M +I[F,* M]]=O 

(38) d*  0 + I F ,  * 0]] + I S ,  * M]] = 0  

This last expression is a somehow "mixed" covariant derivative which takes 
into account the coupling between (pseudo)-rotations and translations. 
Defining J =  M + 0, these equations can be combined into the expression 

d * J +  IF,  * f ]  = 0 (39) 

4. CONTRACTIONS OF GAUGE FIELDS 

If now we look for a Lagrangian formalism leading to (33) and (34) 
along the lines discussed in Section 2, we come face to face with a serious 
difficulty. From the roles played by F and if, we could expect to be able to 
proceed in the usual way, taking Tr(ff/x * if)  for the Lagrangian density. 
This is not so, as only the Lorentz sector (33) comes out as the resulting 
Euler-Lagrange equations. The same happens to the Bianchi identities: (28) 
comes alone from the variations of Tr (F /x  if). The reason is trivial: the 
matrix ff has the form 

( F~ I T k 
I 

. . . . .  I . . . . . . .  
o . . . o  ,, o 

and Tr (F /x  F ) =  Tr (F /x  F),  Tr ( f fA * i f ) =  Tr (F /x  * F).  These traces 
ignore the translational sector and equations (29) and (34), precisely those 
peculiar to the theory, are missed. We shall follow the general ideas exposed 
in the introduction to solve this problem. 
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Notice to begin with that groups including translation subgroups are 
the normal result of Inont i -Wigner  contractions, which were originally 
introduced to explain how the Poincar~ group is changed into the Galilei 
group when the velocity of light is allowed to tend to infinity. On the other 
hand, to give Lorentz transformations and translations the same status it is 
very convenient (Gtirsey, 1964) to consider the Poincar~ group as a contrac- 
tion of a de Sitter group. We are so led to examine the behavior of gauge 
fields under group contractions. 

In the process of contraction, some convenient coordinates are chosen 
in the Lie algebra which, via the exponential mapping, give local coordi- 
nates for the group ("group parameters").  A limit is then taken which 
contracts some of the coordinates to zero while eventually letting other 
parameters  go to infinity. Infinite values of parameters  of the original group 
are absorbed in the parameters of the resulting group. 

To fix the ideas, consider the two-dimensional Poincar6 group P2 = 
1 S 0 ( 2 )  = SO(2) OT 2. Its Lie a lgebra/2 '  has generators ( J3, Tl, T2 } satisfying 
['/3' T1] = T2; [']3' T2] = / ' 1 ;  [/"1, T2] = 0. We can use for them the matrix 
representation 

= 

0 1 
1 0 
0 0 

0 
0 , 
0 

= 

0 0 
0 0 
0 0 

1 
0 , 
0 

= 

0 0 
0 0 
0 0 

0 
1 (40) 
0 

A matrix B belonging to P2' is 

B = ,13 B3 + T1B 1 + T2 B2 = 

0 B 3 B 1 

B 3 0 B 2 

0 0 0 

(41) 

It  corresponds to a group element 

cosh B 3 sinh B 3 a,. 

g = exp B = sinh B 3 cosh B 3 a t 

0 0 1 

(42) 

where a x = ( B 1 / B 3 ) s i n h  B 3 + ( B 2 / B 3 ) ( c o s h  B3 - 1 ) ;  at = ( B 2 / B 3 ) s i n h  B 3 

+ ( B 1 / B 3 ) ( c o s h  B 3 - 1). The usual parametrization is obtained for sinh B 3 
= ( v / c ) y ;  coshB 3 = y =  ( 1 -  v 2 / c 2 )  -1 /2 .  If we try to obtain the Galilei 
group by taking the limit c---, oo, only its translational part  comes out. In 
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order to obtain the whole group, a similarity transformation S g S -  ~, with 

(i0 0) S =  1 0 
0 1 

has to be done beforehand, which changes (42) to 

"y o'y c a  x 

vy/c  z y al 

0 0 1 

(43) 

The limit now gives 

] b t 

0 1 

(44) 

which represents the two-dimensional Galilei group when applied to column 
vectors (x, t,1). Notice that the Galilean translation parameter b,. = ca X 
absorbs the infinity of c (InQniL 1964). The elements of any matrix in the 
Lie algebra will be accordingly contracted or stretched, their eventual 
infinities being absorbed in the elements of the corresponding matrices of 
the final Lie algebra. 

We shall here be mainly concerned with contractions of Lie algebras. 
As any finite Lie algebra is a subalgebra of some linear algebra GL'(n, R) 
(by Ado's theorem), we shall use the device of embedding both the initial 
and final algebras in a convenient matrix algebra. This is perhaps an 
unusual way of looking at contractions, but it helps to see them at work and 
shows in what sense they are singular transformations. We have already 
done it above, as (40) is a particular realization of P2' in GL'(3, R). The 
similarity transformation leading from (42) to (43) corresponds to a change 
of the basis (40) to ']3 = c~12 + c -  1A21; T 1 = cAl3; T 2 = A23, with the A~ given 
in (19). This possibility of different realizations comes from the fact that the 
commutations rules do not fix them completely. 

Our interest will be the contraction of the de Sitter groups S0(4,1) or 
SO(3,2) to the Poincar6 group P4, but, to show the procedure in some 
detail, we shall examine the simpler case of the contraction of a gauge 
theory for the de Sitter group in two dimensions SO(2,1) to a P2 gauge 
theory, while retaining a four-dimensional space-time. We shall keep the 
basis (40) for P2'- The gauge potential and the field strength for a Pz gauge 
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theory will then be written 

i 2-3 Xx ~-= 3 0 X 2 

0 0 

0 p3 ffl 
F= p3 0 F 2 

0 0 0 

(45) 

The Lie algebra S0 ' (2 ,1 )  of the de Sitter group has generators obeying 
[-/1, J2] = - J3; [J2, J3] = - Jl; [J3, J1] = J2. These commutation relations by 
themselves do not fix the basis of generators. If we look for the most general 
linear combinations of the A~. ~ GL'(3, R),  we find that they will be satisfied 
by any set { J, } of the form 

a 2 1 1 
J3 = a 2 + ~/1 ,, J2 =/3/113 - ~A3x, J, = a/123 + --/132a 

for arbitrary real values of a,/~. As we shall contract SO'(2,1) to P2' 
preserving the SO'(2) generated by J3, we choose a =/3. The gauge potential 
and the field strength will be 

Ao=  

0 

0t 

ro = 

0 Fg ,,Fg 

e0 0 , eo 

F~ F~ 0 
0~ 0t 

(46) 

Notice that the basis chosen for S0 ' (2 ,1 )  is a choice of vectors in a 
six-dimensional subspace of the vector space GL'(3, R) .  The P2' basis (40) is 
a choice of vectors in a four-dimensional subspace included in the above 
one. The contraction SO'(2,1)---, P2' is the limit a---, oo. Let us look, for 
instance, at Jl: it can be any point on a hyperbola branch on the plane 
(//23, A32). The contraction corresponds to a transition to the asymptote A23. 
In this sense, it is a singular transformation strongly reminding the passage 
to infinite-momentum frames. The components of any matrix will stretch or 
shrink as shown in (46), which is a kind of interpolation between the initial 
(say, for a = 1) and the final algebras. Comparison with (45) shows how the 
P2 fields absorb the infinities: in the limit, a F  o = fix, a F  1 = if2, F~ = if3, 
~ 1 =  aA 2, ~-2= aAlo, and ~-3= A 3. Always in the limit, the fields and 
potentials are related by 

F~ = dAlo + A30 A A 2 = a - l P  z = a - l ( d A  z + ~3 A A ' )  

Fo 2 = dA~ + A3o A A~ = a - l f f  1 = a- l (d .41 + A '  A ~2)  

FO 3 = N A  3 + A  2 A A l = f f 3 = d ~ ' 3 + 0 ~ - 2 ~ ' l A  ~'2 
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Notice that A-~, ~-2 are parts (because we are working with only a subgroup 
P2 of P4) of the solder form; ffl, fiE, of the torsion form; and if3 and .~3 the 
field and potential for the untouched SO(2) sector. Changing notation 
accordingly, 

Fo 1 = a-XT 2 = o t - l (dS  2 + A A S a) 

Fo 2 = a -XT  x = a - t (  dS 1 + A A S 2) 

F3 = F = d A  + a - z S I  A S 2 

(47) 

The S0(2 ,1)  second-order invariant is 

I z = - � 8 9 1 8 9  (48) 

for any value of a and consequently as near as we may wish of the 
asymptotic limit meant by the contraction. The translational contribution is 
lost only when a-1  = 0, the invariant reducing to the sole SO(2) invariant. 
Suppose, however, that we integrate (48) as it is, and take variations in the 
potentials A, S 1, and $2: the resulting equations are 

d F + e t - 2 [ S , T ] = O  

d T + [ A , T ] + [ S , F ] = O  

When a - t  = 0, these are just (28) and (29) for this particular case. Notice 
also from (47) that F reduces to the SO(2) field strength. So, we learn here 
the following: the correct Bianchi identities are obtained from the de Sitter 
invariant if the variations are proceeded to as for the SO(2,1) theory and 
the contraction is accomplished afterwards. The same is true for the 
Lagrangian 

L =  - �89 A * F - a - 2 T  A * T )  (49) 

which leads to the SO(2,1) Yang-Mills equations and, with contraction as 
the last step, to equations (33) and (34) for this particular case. 

Notice that, looking in GL'(3, R), the components affected by the 
contraction are those along A3 l, A13, A32, and A23, involving the index "3." 
We could call them the " third"  components. The components which relate 
only to the fixed subgroup SO(2) remain intact. All the above procedure 
holds for the four-dimensional Poincar6 group P4, whose equations are 
obtained from those for S0(4 ,1)  or SO(3,2) in just the same may as above 
those for P2 have been derived from those for S0(2,1) .  Of course, the fixed 
subgroup will be SO(3,1) and the distorted components are those along N 5 
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and Asj in the embedding GL'(5, R) ("fifth" components), but nothing 
essential is changed. Before contraction, the equations are (29), (34) and 

dF+[F,  F ] + a - 2 [ S ,  T] = 0 (50) 

d �9 F + [ r ,  �9 F ] +  ,~- 2[S,  �9 r ]  = 0 (51) 

The torsion (the "fifth" components of the de Sitter field strengths) appears 
directly as in (27), because both sides of the equations are distorted in the 
same way [as in (47)]. The field strength is now 

F = d F + F A  F + a - 2 S A S  (52) 

S being the "fifth" components of the de Sitter potential. 
From these interpolating expressions an alternative interpretation comes 

forth: the P4 theory is a de Sitter gauge theory supplemented by the 
constraints 

[S ,T]  = 0, S A S =  0 (53) 

whose role is to enforce the commutation between translations. One could 
forget about contraction, use the action 

s = ~  f T r [ F  A * F - T  A *T] (54) 

taking T and S as the "fifth" components in a de Sitter theory (which 
means that F depends on S for variations) and use (53) as weak constraints 
in the sense of Dirac (1964), to become effective only after the variations are 
performed. This is similar to the relativistic kinematics for a free particle, 
where the explicitly covariant equations of motion result from the action 
S =  mfd'ruxu x and only after that the weak constraint uxu x= - c  2 is 
reinstated. 

5. FINAL COMMENTS AND SPECULATIONS 

If we accept the arguments favoring a P4 theory, it is difficult to evade 
the conclusion that the scheme above describes the general lines of what a 
classical gauge theory for gravitation should be. It has the obvious ad- 
vantage of being fairly unique and avoiding the proliferation of candidate 
Lagrangian densities. It assigns an equally important role to all the genera- 
tors of the Poincar~ group and, unlike the theories of the Einstein-Cartan 
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type, gives to torsion a dynamical significance. The spin and energy- 
momentum of external fields are called to their roles of source currents as 
expected. It contains Einstein's equations in a particular case, yet remains 
enough of a gauge theory to keep alive the hope of being renormalizable and 
avoiding some of the criticisms against general relativity, such as the 
possible nonconservation of overall energy-momentum (Denisov and 
Logunov, 1980) and bad Newtonian limit (Denisov and Logunov, 1981). It 
is not excluded that it may give Einstein's theory as a macroscopic effective 
theory after some well-chosen averaging on the fields is performed, just as 
the nonrenormalizable Fermi theory for weak interactions is obtained from 
the Weinberg-Salam model (Adler, 1982), nor that its Lorentz sector be 
related to strong gravity (Ne'eman, 1981). Indeed, Eq. (49) is, in detail. 

- ~,~,,~ p ~,~ I_~_T~, T,~,~+ 1 ( R _  8 ) 
L - - ~ - -  ~.~t~ + 4otZ ~, ~ --~ 

where the F"a~,~ are the curvature components corresponding to the Lorentz 
D - -  I , ~ 1 , , ~  I z ' a f l  subtheory, , ,  - , , , , , # -  ~,, and the last term appears naturally as a cosmo- 

logical term. The existence of the constraints makes it dangerous to reason 
from the Lagrangian alone, but let us suppose, for the sake of argumenta- 
tion, that a is large and finite. The corresponding picture is that of a de 
Sitter group acting on a de Sitter tangent (or contact) space. We can insert a 
universal coupling constant by making F ~ gF in all the formulas above. In 
this case, the coupling between the quanta in the Lorentz sector is much 
larger than the remaining ones. Typically, the averaging would (if it worked) 
erase somehow the first two terms of L while changing drastically g and a, 
making them into dimensional constants. A naive three-level estimation 
would give, if comparison is made with the Einstein-Hilbert action, 
(16~rG)- l fd4x( -g)a /2(R-2A) ,  A = 4 a  -2 and G=(27rAg)  -1, showing 
that g should be very large indeed. 

Furthermore, the model could help clarifying some aspects of gravita- 
tion related to boundary conditions. For example, a difficulty will probably 
come from the noncompacticity of the group. The infinite volume of the 
group manifold should not be much of a hindrance, as it cancels out of 
the generating functional, but the Hamiltonian will not be positive definite. 
The fact that quantization can be formally performed for the SL(2, C) 
gauge theory is encouraging (Martellini and Sodano, 1980), but stability 
considerations will probably require some strict boundary conditions on the 
fields. Further restriction should come from Gribov's ambiguity (Gribov, 
1978): to remove it, limiting conditions are likewise necessary. Finally, the 
covariance of the charges restrict the acceptable gauge transformations in 
any gauge theory to those which are constant at spatial infinity, a situation 
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strongly reminding the flat-space asymptotic condition necessary to a coher- 
ent definition of energy-momentum in general relativity. All these condi- 
tions would restrict the admissible gauges and, consequently, the families of 
acceptable reference frames, pointing so to some kind of gauge counterpart 
of Mach's principle. 

The contraction procedure may be useful in the analysis of the quanti- 
zation itself, as it reduces the problem to that of inspecting the limiting 
behavior of the Feynman rules and Slavnov-Taylor identities for the de 
Sitter gauge theory. One could even conjecture that contraction would help 
clarifying the issue of symmetry breaking in general. Higgs fields appear in 
a very natural way in the interplay of internal and space-time symmetries 
(Forg~cs and Manton, 1980). In the approach above, a group is contracted 
and (as discussed in Section 3) the resulting translational sector is "broken"  
by a choice of gauge (local frames). One could take the arguments given by 
Trautman (1979), in which the four-legs are Higgs fields breaking the 
natural GL(4 ,  R )  invariance down to Lorentz invariance and argue tail-end 
backward: the better known vierbein fields could shed some light on the 
meaning of the far less understood Higgs fields. 

A C K N O W L E D G M E N T S  

The authors are very grateful to B. M. Pimentel for a critical reading of the manuscript 
and for many suggestions. 

R E F E R E N C E S  

Adler, S. L. (1982). Reviews of Modern Physics, 54, 729. 
Atiyah, M. F. (1979). Geomet~ of Yang-Mills Fields. Accademia Nazionale dei Lincei, Pisa, 

Italy. 
Basombrio, F. G. (1980). General Relativi O, and Gravitation, 12, 109. 
Bishop, R. L., and Crittenden, R. J. (1965). Geometr3., of Manifolds. Academic Press, New York. 
Camenzind, M. (1975). Journal of Mathematical Physics, 16, 1023. 
Camenzind, M. (1978). Physical Review D, 18, 1068. 
Carmeli, M. (1970). Journal of Mathematical Pt(vsics 11, 2728. 
Carmeli, M., and Kaye, M. (1978). Annals of Ph.vsics (New York), 113, 177. 
Cartan, E. (1922). Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 174, 

593. 
Cho, Y. M. (1975). Journal of Mathematical Physics, 16, 2029. 
Cho. Y. M. (1976a). Physical Review D, 14, 3335. 
Cho, Y. M. (1976b). Physical Review D, 14, 2521. 
Denisov, V. I., and Logunov, A. A. (1980). Theoretical and Mathematical Physics, 43, 401. 
Denisov, V. I., and Logunov, A. A. (1981). Theoretical and Mathematical Physics, 45, 1035. 
Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. Yeshiva University Press, New York. 
Dreschsler, W. (1981). Poincar~ gauge field theory and gravitation, Max-Planck-Munich 

preprint MPI 15/81. 



Complete Gauge Theory for the Whole Poincart Group 323 

Forgacs, P., and Manton, N. S. (1980). Communications in Mathematical Physics, 72, 15. 
Gilmore, R. (1974). Lie Groups, Lie Algebras and Some of Their Applications. John Wiley. New 

York. 
Gribov, V. N. (1978). Nuclear Physics, B139, 1. 
GiJrsey, F. (1964). In Group Theoretical Concepts and Methods in Elementary Particle Physics, F. 

Giirsey, ed., p. 365. Gordon and Breach, New York. 
Hehl, F. H., vonder Heyde, P., Kerlick, G. D., and Nester, J. M. (1976). Reviews of Modern 

Physics, 48, 393. 
Hehl, F. H. (1979). Four lectures on Poincar~ field theory, in the 6th Course of the 

International School of Cosmology and Gravitation, Erice, Italy, (preprint). 
Hehl, F. H. (1981). On the gauge field theory of gravitation, lectures given at the Dublin 

Institute for Advanced Studies, preprint. 
In•nii, E. (1964). In Group Theoretical Concepts and Methods #1 Elementa O, Particle Physics, F. 

Giirsey, ed., p. 391. Gordon and Breach, New York. 
K~iempffer, F. A. (1968). Physical Ret,iew, 165, 1420. 
Kibble, T. W. B. (1961). Journal of Mathematical Physics, Z, 212. 
Kobayashi, S., and Nomizu, K. (1963). Foundations of Differential Geometo,, Vol. I. Intersci- 

ence, New York. 
Kobayashi, S., and Nomizu, K. (1969). Foundations of Differential Geometry, Vol. II. Intersci- 

ence, New York. 
Lichnerowicz, A. (1962). Thkorie GIobale des Connexions et des Groupes d 'Holonomie. Edizioni 

Cremoneze, Roma. 
Logunov, A. A., and Folomeshkin, V. N. (1978). Theoretical and Mathematical Physics, 32, 653. 
Ne'eman, Y. (1980). In Some Strangeness in the Proportion, H. Woolf, ed. Addison-Wesley, 

Reading, Massachusetts. 
Ne'eman, Y. (1981). In To Fulfill a Vision, Y. Ne'eman, ed. Addison-Wesley, Reading, 

Massachusetts. 
Martellini, M., and Sodano, P. (1980). Physical Review D, 22, 1325. 
Popov, D. A., and Daikhin, L. I. (1976). Soviet Phyics Doklady, 20, 818. 
Sciama, D. W. (1962). In Recent Developments in General RelativiO,. Pergamon, Oxford. 
Sezgin, E., and van Nieuwenhuysen, P. (1980). Physical Review D, 21, 3269. 
Stelle, K. S. (1977). Physical Review D, 16, 953. 
Trautman, A. (1970). Reports on Mathematical Physics, 1, 29. 
Trautman, A. (1979). Czechoslovak Journal of Physics, B29, 107. 
Wallner, R. P. (1980). General Relativi O, and Gravitation, 12, 719. 
Wigner, E. P., and IniSni), E. (1954). Proceedings of the National Academy of Sciences, 40, 119. 
Yang, C. N. (1974). Physical Review Letters, 33, 445. 
Zhenlong, Z., et al. (1979). Scientia Sinica, 22, 628. 


